If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 22t + 9.81t2 + -10 = 0 Reorder the terms: -10 + 22t + 9.81t2 = 0 Solving -10 + 22t + 9.81t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 9.81 the coefficient of the squared term: Divide each side by '9.81'. -1.019367992 + 2.242609582t + t2 = 0 Move the constant term to the right: Add '1.019367992' to each side of the equation. -1.019367992 + 2.242609582t + 1.019367992 + t2 = 0 + 1.019367992 Reorder the terms: -1.019367992 + 1.019367992 + 2.242609582t + t2 = 0 + 1.019367992 Combine like terms: -1.019367992 + 1.019367992 = 0.000000000 0.000000000 + 2.242609582t + t2 = 0 + 1.019367992 2.242609582t + t2 = 0 + 1.019367992 Combine like terms: 0 + 1.019367992 = 1.019367992 2.242609582t + t2 = 1.019367992 The t term is 2.242609582t. Take half its coefficient (1.121304791). Square it (1.257324434) and add it to both sides. Add '1.257324434' to each side of the equation. 2.242609582t + 1.257324434 + t2 = 1.019367992 + 1.257324434 Reorder the terms: 1.257324434 + 2.242609582t + t2 = 1.019367992 + 1.257324434 Combine like terms: 1.019367992 + 1.257324434 = 2.276692426 1.257324434 + 2.242609582t + t2 = 2.276692426 Factor a perfect square on the left side: (t + 1.121304791)(t + 1.121304791) = 2.276692426 Calculate the square root of the right side: 1.508871242 Break this problem into two subproblems by setting (t + 1.121304791) equal to 1.508871242 and -1.508871242.Subproblem 1
t + 1.121304791 = 1.508871242 Simplifying t + 1.121304791 = 1.508871242 Reorder the terms: 1.121304791 + t = 1.508871242 Solving 1.121304791 + t = 1.508871242 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1.121304791' to each side of the equation. 1.121304791 + -1.121304791 + t = 1.508871242 + -1.121304791 Combine like terms: 1.121304791 + -1.121304791 = 0.000000000 0.000000000 + t = 1.508871242 + -1.121304791 t = 1.508871242 + -1.121304791 Combine like terms: 1.508871242 + -1.121304791 = 0.387566451 t = 0.387566451 Simplifying t = 0.387566451Subproblem 2
t + 1.121304791 = -1.508871242 Simplifying t + 1.121304791 = -1.508871242 Reorder the terms: 1.121304791 + t = -1.508871242 Solving 1.121304791 + t = -1.508871242 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-1.121304791' to each side of the equation. 1.121304791 + -1.121304791 + t = -1.508871242 + -1.121304791 Combine like terms: 1.121304791 + -1.121304791 = 0.000000000 0.000000000 + t = -1.508871242 + -1.121304791 t = -1.508871242 + -1.121304791 Combine like terms: -1.508871242 + -1.121304791 = -2.630176033 t = -2.630176033 Simplifying t = -2.630176033Solution
The solution to the problem is based on the solutions from the subproblems. t = {0.387566451, -2.630176033}
| (x-1)(x+2)-(x-3)(x-5)=2x | | -4g^2+9g+7=0 | | 7y-2(y-3)=-4 | | 3x+y+2z-6=0 | | 2(2w+3)-9= | | (5-4x)-(3+2x)=7-x | | 182600=28x+40(6000-x) | | 18+n-39=739 | | x^2+z^2+4y=0 | | 0.4x-0.3(70+x)=-0.2(70) | | 2v(5u+6v)=u-10 | | y-4/5=14/15 | | 6x+4(5-x)=10 | | 2x+9=5x+33 | | 6x-4(5-x)=10 | | 4x-10+4x=-18 | | 6x-(4x+7)=15 | | x+9+x-9=324 | | 4y+(6y+7)=8 | | 3+(-4x+1)=6x | | (1/4)(-2/7) | | 3x+(7-5x)=4 | | (x)=2x/4 | | .11-0.01(x+1)=-0.02(4-x) | | G(x)=2x/4 | | 10+10x=2(6x-5) | | 7x-9=5(x+1) | | 5/6t=-15 | | X-5/4y=1/2 | | 13/6x=180 | | 2-8x=7x-5 | | x+5-4-x=1 |